Salvicine functions as novel topoisomerase II poison by binding to ATP pocket.
نویسندگان
چکیده
Salvicine, a structurally modified diterpenoid quinone derived from Salvia prionitis, is a nonintercalative topoisomerase II (topo II) poison. The compound possesses potent in vitro and in vivo antitumor activity with a broad spectrum of anti-multidrug resistance activity and is currently in phase II clinical trials. To elucidate the distinct antitumor properties of salvicine and obtain valuable structural information of salvicine-topo II interactions, we characterized the effects of salvicine on human topo IIalpha (htopo IIalpha), including possible binding sites and molecular interactions. The enzymatic assays disclosed that salvicine mainly inhibits the catalytic activity with weak DNA cleavage action, in contrast to the classic topo II poison etoposide (VP16). Molecular modeling studies predicted that salvicine binds to the ATP pocket in the ATPase domain and superimposes on the phosphate and ribose groups. In a surface plasmon resonance binding assay, salvicine exhibited higher affinity for the ATPase domain of htopo IIalpha than ATP and ADP. Competitive inhibition tests demonstrated that ATP competitively and dose-dependently blocked the interactions between salvicine and ATPase domain of htopo IIalpha. The data illustrate that salvicine shares a common binding site with ATP and functions as an ATP competitor. To our knowledge, this is the first report to identify an ATP-binding pocket as the structural binding motif for a nonintercalative eukaryotic topo II poison. These findings collectively support the potential value of an ATP competitor of htopo IIalpha in tumor chemotherapy.
منابع مشابه
Salvicine inactivates beta 1 integrin and inhibits adhesion of MDA-MB-435 cells to fibronectin via reactive oxygen species signaling.
Integrin-mediated adhesion to the extracellular matrix plays a fundamental role in tumor metastasis. Salvicine, a novel diterpenoid quinone compound identified as a nonintercalative topoisomerase II poison, possesses a broad range of antitumor and antimetastatic activity. Here, the mechanism underlying the antimetastatic capacity of salvicine was investigated by exploring the effect of salvicin...
متن کاملReactive oxygen species elicit apoptosis by concurrently disrupting topoisomerase II and DNA-dependent protein kinase.
Reactive oxygen species (ROS) are produced by all aerobic cells and have been implicated in the regulation of diverse cellular functions, including intracellular signaling, transcription activation, proliferation, and apoptosis. Salvicine, a novel diterpenoid quinone compound, demonstrates a broad spectrum of antitumor activities. Although salvicine is known to trap the DNA-topoisomerase II (To...
متن کاملThe telomeric protein TRF2 is critical for the protection of A549 cells from both telomere erosion and DNA double-strand breaks driven by salvicine.
Telomere repeat binding factor 2 (TRF2) has been increasingly recognized to be involved in DNA damage response and telomere maintenance. Our previous report found that salvicine (SAL), a novel topoisomerase II poison, elicited DNA double-strand breaks and telomere erosion in separate experimental systems. However, it remains to be clarified whether they share a common response to these two even...
متن کاملTranscription factor c-Jun activation represses mdr-1 gene expression.
Expression of mdr-1 is complex and highly regulated. Several lines of evidence indirectly suggest that transcription factor c-Jun may negatively regulate human mdr-1 gene expression. We recently found that salvicine, a novel topoisomerase II inhibitor, is cytotoxic for multidrug resistance (MDR) tumor cells and down-regulates mdr-1 expression in MDR K562/A02 cells. Salvicine also stimulates a s...
متن کاملCatalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue
BACKGROUND Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. In contrast, catalytic inhibitors block the enzyme before DNA scission. Although several catalytic inhibitors of topoisomerase II have been described, preclinical concepts for exploiting their anti-proliferative activity based on molecular characteris...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 70 5 شماره
صفحات -
تاریخ انتشار 2006